Received: April 17, 1985; accepted: May 5, 1985

PRELIMINARY NOTE

Surface Complexation by Caesium Fluoride. The Case of Sulphur Tetrafluoride

KIM W. DIXON and JOHN M. WINFIELD

Department of Chemistry, The University of Glasgow, Glasgow G12 8QQ, (U.K.)

SUMMARY

The heterogeneous, room temperature complexation reaction between caesium fluoride and sulphur tetrafluoride is conveniently observed using 18 F and 35 S radiotracer methods. The major surface species is weakly adsorbed $^{SF}_4$, $^{SF}_5$ being a minor species. Neither undergo observable 18 F exchange with CsF at room temperature.

The widespread use of caesium fluoride as a catalyst under heterogeneous conditions implies the existence of reactive, adsorbed species. For example a reaction scheme for the catalytic chlorofluorination of sulphur tetrafluoride proposed from a sulphur - 35 and chlorine - 36 radiotracer study [1], involves SF₄ and ClF weakly adsorbed at CsF. A more detailed examination of SF₄ adsorption is now presented.

Room temperature interactions between CsF, activated by formation and subsequent thermal decomposition of its 1:1 adduct with hexafluoroacetone to increase its surface area [2], and [35 s] - SF₄ or [18 F] - SF₄ have been studied by direct monitoring Geiger-Müller or well-scintillation counting techniques respectively. These enable increases in radioactivity of the solid phase during reactions to be followed [1, 3]. Results using the two tracers are complementary. 18 F (0.51 MeV Y) activity observed in CsF could arise from 18 F exchange

and from uptake of SF $_3^{18}$ F by both surface and bulk CsF. Observation of 35 S activity in CsF is limited to its surface due to 35 S(β -max = 0.167 MeV) self-absorption. However uptake of 35 SF $_4$ by surface and bulk can be determined indirectly from the decrease in gaseous 35 S count rate during a reaction. Using SF $_3^{18}$ F and 35 SF $_4$ of measured specific count rates enable stoicheimetries to be precisely determined more easily than by conventional manometric methods.

At pressures greater than 10 Torr saturation coverage of CsF by 35 SF₄ is observed, (Fig. 1.) 85% of the surface activity is removed rapidly when gaseous 35 SF₄ is removed by condensation, and this must be due to weakly adsorbed 35 SF₄. The remainder cannot be desorbed by pumping at room temperature. 18 F activity observed in CsF during reaction with SF $_3^{18}$ F, (Fig. 2) is virtually unaffected by removal of gaseous SF $_3^{18}$ F. Specific count rates determined for SF $_3^{18}$ F before and after reaction are identical within experimental error, therefore 18 F in the solid arises solely from SF $_3^{18}$ F uptake by bulk and surface CsF. The uptake is independent of initial pressure over the range 100 - 300 Torr, and corresponds to $^{0.09}$ $^{+0.02}$ mmol (mmol CsF) $^{-1}$. That determined indirectly from 35 SF $_4$ experiments is $^{0.10}$ $^{+0.02}$ mmol (mmol CsF) $^{-1}$.

The i.r. spectrum of the solid after treatment with ${\rm SF}_4$ contains bands attributable to the ${\rm SF}_5^-$ anion [4], thus it is a reasonable assumption that ${\rm SF}_5^-$ is the major bulk species and the minor surface species. The absence of detectable $^{18}{\rm F}$ exchange at room temperature is partly a consequence of ${\rm S}^{1V}$ in ${\rm SF}_5^-$ being coordinatively saturated, but it also indicates that in the weakly adsorbed state, the S-F bonds of ${\rm SF}_4$ retain their integrity. $^{18}{\rm F}$ exchange between ${\rm Cs}^{18}{\rm F}$ and ${\rm SF}_4$ is observed above ${\rm 80}^{\circ}{\rm C}$ and presumably occurs via an ${\rm SF}_4^{-18}{\rm F}^-$ dissociative process too slow to be observed at room temperature.

The behaviour described above contrasts with that of $^{35}\mathrm{SF}_4$ and $^{18}\mathrm{F}$ towards the solid Lewis acids (NbF $_5$) $_4$ and AlF $_3$ where room temperature $^{18}\mathrm{F}$ exchange with no retention is observed.

The B.E.T. surface area of CsF pretreated with $({\rm CF_3})_2{\rm CO}$, determined using $^{85}{\rm Kr}$ as adsorbate [2] is in the range (95% confidence limits) 3.011 - 2.083 m $^2{\rm g}^{-1}$. The maximum number of surface F ions in a typical CsF sample (3.30 mmol), calculated from the surface area measurements and a value of 6.008Å for the CsF unit cell edge [5],

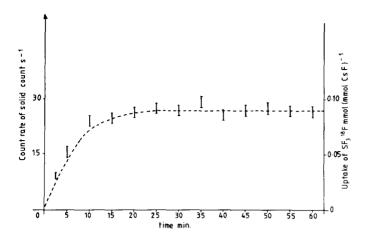


Fig. 1. Variation of $^{35}{\rm SF}_4$ surface coverage with initial $^{35}{\rm SF}_4$ pressure. Coverage was determined after 1h from differences between gas + solid and gas-only $^{35}{\rm S}$ counts.

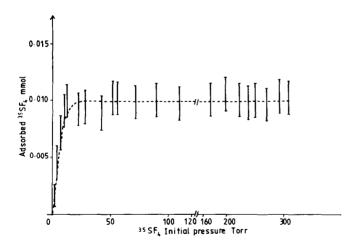


Fig. 2. Uptake of ${\rm SF_3}^{18}{\rm F}$ by CsF with time. Initial ${\rm SF_3}^{18}{\rm F}$ pressure = 300 Torr.

is in the range (5.771 - 8.342) x 10^{18} . The observed surface $^{35}\mathrm{S}$ count rate corresponds to (5.99 $^+$ 2.13) x 10^{18} molecules. Although the agreement between these two estimates is satisfactory, it does not rule out the possibilities that SF_4 is weakly adsorbed at sites other than F^- or that multiple adsorption occurs.

REFERENCES

- 1 G. Kolta, G. Webb and J.M. Winfield, Appl. Catal., 2 (1982) 257.
- 2 G. Kolta, G. Webb and J.M. Winfield, J. Fluorine Chem., <u>14</u> (1979) 331.
- 3 D.K. Sanyal and J.M. Winfield, J. Fluorine Chem., 24 (1984) 75.
- 4 L.F. Drullinger and J.E. Griffiths, Spectrochim. Acta, Part A, 27 (1971) 1793; K.O. Christe, E.C. Curtis, C.J. Schack, and D. Pilipovich, Inorg. Chem., 11 (1972) 1679.
- 5 R.W.G. Wyckoff, 'Crystal Structures' Interscience, New York, 2nd edn., vol. 1, p.86.